Главный и основной компонент биосферы. Биосфера. Учение В.И.Вернадского о биосфере. Функциональная структура биосферы. Так из каких основных компонентов состоит биосфера

Биосфера, согласно учению академика В.И. Вернадского, представляет собой наружную оболочку Земли, включающую все живое вещество и область его распространения (среду обитания). Верхняя граница биосферы — защитный озоновый слой в атмосфере на высоте 20—25 км, выше которого жизнь невозможна ввиду воздействия ультрафиолетового излучения. Нижней границей биосферы являются: литосфера до глубины 3—5 км и гидросфера до глубины 11—12 км (рис. 1.3).


Р ис 1.3. Строение биосферы (по В.И. Вернадскому)

Компоненты биосферы: атмосфера, гидросфера, литосфера — выполняют важнейшие функции по обеспечению жизни на Земле.

Биосфера возникла около 4,5 млрд лет назад и прошла несколько этапов эволюционного развития: от первоначального круговорота органического вещества к биологическому круговороту — непрерывному обмену веществом и энергией между живыми организмами и окружающей средой в течение всей жизни организмов и после их смерти.

Важнейшими компонентами биосферы являются:

Живое вещество (растения, животные, микроорганизмы);

Биогенное вещество органического происхождения (уголь, торф, почвенный гумус, нефть, мел, известняк и др.);

Косное вещество (горные породы неорганического происхождения);

Биокосное вещество (продукты распада и переработки горных пород живыми организмами).

По В.И. Вернадскому, живое вещество является носителем свободной энергии биосферы и связано с неживым веществом биогенной миграцией атомов. Биомасса сухого вещества живых организмов Земли, включающих около 500 тыс. видов растений и 1,5 млн видов животных, чрезвычайно велика и составляет, примерно, 2,4232*10 12 т. Ежегодный прирост живого вещества на Земле составляет около 8,8*10 11 т. Через эти живые организмы прошло большое количество элементов верхней части литосферы, атмосферы и гидросферы.

Важным во взаимоотношениях организмов является пищевой трофический фактор (от греч. trophe — пища). Первичное органическое вещество создают зеленые растения {продуценты — производители), используя солнечную энергию. Они потребляют углекислый газ, воду, соли и выделяют кислород.

Потребителей (консументов) можно разделит на два порядка:

I — организмы, питающиеся растительной пищей;

II — организмы, питающиеся животной пищей.

Редуценты (восстановители) — организмы, питающиеся разлагающимися организмами, бактерии и грибы. Здесь особенно велика роль микроорганизмов, до конца разрушающих органические остатки и превращающих их в конечные продукты (минеральные соли, углекислый газ, воду, простейшие органические вещества), поступающие в почву и вновь потребляемые растениями.

Все животные и растения избирательны к составу пищи в зависимости от необходимости в тех или иных минеральных элементах. Животные и растения — необходимые факторы среды по отношению к другим животным и растениям, они взаимно необходимы.

Любой организм приспособлен к существованию в достаточно узких пределах изменения условий окружающей среды, причем выход параметров среды за сложившиеся границы влечет за собой угнетение жизнедеятельности данного вида или его гибель. Границы распространения организма (ареал) обусловлены соблюдением необходимых требований данного организма к условиям (факторам) среды. Каждый вид занимает то место, которое обусловлено его требованиями к территории, пище, воспроизводству и другими функциями организма. Эта совокупность параметров среды для обитания вида, место, занимаемое им в биосфере, называется экологической нишей. Все факторы в экологической нише взаимосвязаны: изменение одного из них влечет за собой изменение других.

Способность живых организмов адаптироваться к факторам среды характеризуется экологической валентностью, или пластичностью.

Живые организмы находятся в постоянном взаимодействии с окружающей средой, состоящей из множества меняющихся во времени и пространстве явлений, условий, элементов, называемых экологическими факторами среды. Это любые условия окружающей среды, оказывающие длительное или кратковременное влияние на живые организмы, реагирующие на эти влияния приспособительными реакциями. Они делятся на абиотические (факторы неживой природы) и биотические (факторы живой природы). Принятый сегодня вариант классификации экологических факторов среды представлен в табл. 1.2.

Таблица 1.2
Классификация экологических факторов среды

Абиотические

Биотические

Климатические: свет, температура, влага, движение воздуха, давление

Фитогенные: растительные организмы

Эдафогенные («эдафос» — почва): механический состав, влагоемкость, воздухопроницаемость, плотность

Зоогенные: животные

Орографические: рельеф, высота над уровнем моря, экспозиция склона

Микробиогенные: вирусы, простейшие, бактерии, риккетсии

Химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность и состав почвенных растворов

Антропогенные: деятельность человека (в том числе строительная)


Характеристики основных абиотических факторов, которые необходимо учитывать при реставрации памятников архитектуры, приведены в Приложении 1.1. Это состав атмосферы; соотношение баллов 12-ти бальной сейсмической шкалы с магнитудой землетрясений; сейсмическая шкала; шкала силы ветра.

Биотические экологические факторы определяют взаимоотношения организмов. Указанные факторы в этом случае называют трофическими, т.е. пищевыми.

Экологические факторы под действием вновь полученных химических веществ, которых нет в природе, и техногенных компонентов, созданных человеком, сильно изменены. Появляются вещества-загрязнители, что приводит к нарушению сапрофитного (поддерживающего равновесие в экосистеме) взаимодействия в природной среде. Это часто сопровождается гибелью животных, растений, приводит к нарушению функций, гибели всего живого и опустыниванию земли. Преобладающими видами в микробиоте становятся патогенные микроорганизмы, которые можно отнести к биологическим загрязнителям. Негативно изменяется состав атмосферы, повышается агрессивность подземных и грунтовых вод. На планете наблюдаются потепление, нарушение озонового слоя, учащаются кислотные дожди.

Все перечисленные факторы оказывают влияние не только на живые организмы (в том числе и человека), но и на памятники, и неучет даже одного из них может сказаться на качестве реставрации и даже привести к гибели памятника.

Живые организмы в природе существуют в виде популяций — исторически сложившихся естественных совокупностей особей данного вида, связанных взаимоотношениями и адаптацией в условиях определенного района или иного места обитания (биотопа). В естественных природных условиях численность и плотность популяции неслучайны, они определяются регулирующими (управляющими) экологическими факторами. Способность среды поддерживать нормальную жизнедеятельность организма или популяции называется емкостью экоси стемы.

Экологическая система (экосистема) — это совокупность взаимосвязанных и взаимозависимых совместно обитающих различных видов организмов и условий их существования. В экосистеме связаны биоценоз (сообщество совместно живущих организмов) и биотоп (среда обитания). Основные типы природных экосистем на Земном шаре перечислены на рис. 1.4.



Рис. 1.4. Основные типы природных экосистем

Академик В.Н. Сукачев предложил понятие биогеоценоз (от греч. биос — жизнь, Гея — Земля, ценоз — общий) — природная система живых организмов и окружающей их абиотической среды, связанная обменом — веществами, энергией и информацией. Сейчас термины «экосистема» и «биогеоценоз» принято считать практически синонимами.

В состав биогеоценоза входят:

Растительный компонент (фитоценоз);

Животный компонент (зооценоз);

Микроорганизмы (микробиоценоз);

Почва и почвенно-грунтовые воды, во взаимодействии с растительным, животным компонентами и микроорганизмами образующие эдафотоп;

Атмосфера, которая, взаимодействуя с другими компонентами, образует климатоп;

Неживая природа, представляющая собой косное вещество — экотоп.

Таким образом, биогеоценоз — пространственно обособленная, целостная элементарная единица биосферы, все компоненты которой тесно связаны между собой. Основными компонентами биогеоценоза являются три группы организмов — растения, животные и микробы, с помощью которых вещества движутся от одного компонента к другому, отражая известную общую закономерность круговорота веществ в природе.

Экологические компоненты биогеоценоза (или ландшафта, или средообразующие компоненты) в экологии рассматриваются как основные материально-энергетические составляющие экологических систем. К ним, по Н.Ф. Реймерсу (рис 1.5.), относятся: энергия, газовый состав (атмосфера), вода (жидкая составляющая), почвосубстрат, автотрофы-продуценты (растения) и организмы — гетеротрофы (консументы и редуценты). Сегодня к этому перечню экологических компонентов прибавляют информацию.



Рис. 1.5. Экологические компоненты (по Н.Ф. Реймерсу)

В то же время все экологические компоненты являются природными ресурсами, качество которых определяет качество жизни человека, а антропогенное нарушение взаимодействий между ними может это качество снизить.

В реальных экосистемах круговорот обычно бывает незамкнутым, так как часть веществ уходит за пределы экосистемы, а часть поступает извне. Но в целом принцип круговорота в природе сохраняется. Более простые экосистемы объединены в общую планетарную экосистему (биосферу), в которой круговорот веществ проявляется в полной мере — жизнь на Земле возникла миллиарды лет назад, и если бы не было замкнутого потока необходимых для жизни веществ, их запасы давно исчерпались бы и жизнь прекратилась.

Вмешательство человека отрицательно влияет на процессы круговорота. Например, вырубка лесов или нарушение процессов ассимиляции веществ растениями в результате загрязнений приводят к снижению интенсивности усвоения углерода. Избыток органических элементов в воде, возникающий под действием промышленных стоков, вызывает загнивание водоемов и перерасход растворенного в воде кислорода, что исключает возможность развития здесь аэробных (потребляющих кислород) бактерий. Сжигая ископаемое топливо, фиксируя атмосферный азот в продуктах производства, связывая фосфор в синтетических моющих средствах человек нарушает круговорот этих элементов.

Круговорот веществ в природе подразумевает общую согласованность места, времени и скоростей процессов, идущих на разных уровнях — от популяции до биосферы. Такую согласованность явлений природы называют экологическим равновесием; это равновесие подвижное, динамическое.

В экологической системе (без вмешательства человека) поддерживается равновесие, исключающее необратимое уничтожение тех или иных звеньев в трофических цепях. Человек в процессе своей деятельности постоянно воздействует на экосистему в целом, а также на ее отдельные звенья. Это может проявляться в виде введения в экосистему новых компонентов, в том числе загрязняющих веществ, либо уничтожения отдельных компонентов (отстрел животных, вырубка лесов и т.д.). Не всегда и не сразу эти воздействия ведут к распаду всей системы, нарушению ее стабильности. Но сохранение системы не означает, что она осталась неизменной. Система трансформируется, и оценить количество и направление возникших изменений крайне сложно.

В результате производственной деятельности человека возник новый процесс обмена веществ и энергией между природой и обществом (при сохранении биологического обмена) — антропогенный обмен, который существенно изменяет общепланетарный круговорот веществ, резко ускоряя его. Антропогенный обмен отличается от биотического круговорота своей незамкнутостью, он носит открытый характер. На входе антропогенного обмена находятся природные ресурсы, а на выходе — производственные и бытовые отходы. Экологическое несовершенство антропогенного обмена заключается в том, что коэффициент полезного использования природных ресурсов, как правило, чрезвычайно низок, а отходы производства загрязняют природную среду. Более того, многие из них не разлагаются до природного состояния. Масштабы и скорость антропогенного обмена резко возрастают, вызывая заметное напряжение в биосфере.

На последнем этапе развития биосферы в мощную силу превратилась человеческая деятельность, необратимо и целенаправленно меняющая природную среду. Сформировалась биотехносфера — следствие социального и научно-технического развития человечества. Взаимоотношения между природой и человеком во многих случаях несбалансированы, ведут к угнетению окружающей среды (в частности, разрушению среды архитектурно-исторической), что может привести к деградации биосферы.

Сформированную строителями новую систему можно назвать природно-техногенной (ПТС). Процесс ее формирования, если он не откорректирован в соответствии с экологическими компонентами (другими словами, в соответствии с законами развития экосистемы), как правило, приводит к нарушению естествен-

ных взаимодействий в природной системе, в основном, за счет привнесения в нее «чуждых» компонентов, которые могут быть восприняты экосистемой как загрязнители. Недоучет этих взаимодействий при осуществлении строительной деятельности недопустим, так как он приводит к снижению качества строительства и ухудшает качество среды проживания.

Экологически необоснованная деятельность строителей и реставраторов наносит невосполнимый ущерб природному ландшафту и информационному компоненту экосистемы. Как отмечает Пруцын О.И., происходит разрушение архитектурно-исторической среды*: «Нарушается силуэтность пространственных композиций, гармоничная соподчиненность всего построения, ансамблевое единство. Силуэтность и пропорциональность, достигнутые в историческом периоде, необходимо полностью сохранить, ибо, благодаря классическим соотношениям они могут легко сочетаться с любой предстоящей застройкой».

Не следует забывать, что ландшафт — это всеобъемлющая и вневременная реальность, в которой существовал человек в доурбанистическую эпоху. Именно безукоризненное чувство ландшафта было присуще людям в прошлые века, когда постройки срастались с природным окружением. Архитектура прошлого и сегодня представляет собой школу мастерства зодчества и градостроительства на Руси. Уже начиная с XI в. власти города обязывали застройщиков соблюдать градостроительные правила и законы, регулирующие взаимосвязь между архитектурой и природой. На Руси с XI в. действовал византийский «Закон градский», записанный в кормчих книгах**. Среди его положений были, например, такие: «Только тогда здание можно увидеть по-настоящему, когда оно располагается на стройном месте. Прежде чем строить, осмотри внимательно местность. Выбери такое место, чтобы здание не мешало природе». Или такие: «...повелеваем, чтобы обновляющий ветхий двор не отнимал у соседа света и не лишал его их вида, не изменял первоначального образа»; «...не загораживай насильственно вида соседу, если он прямо видит море, стоя на своем дворе». И сегодня в строительной и реставрационной деятельности основополагающей должна стать «природная» логика.

На этапе развития разумного отношения к сохранению природы должно произойти постепенное превращение биотехносферы в ноосферу — сферу разума, которая, по В.И Вернадскому, является неизбежным и закономерным этапом развития биосферы.

Доказательством начала такого превращения является принятая ООН концепция «устойчивого развития», «устойчивого строительства», «устойчивой реставрации», напрямую связанная с понятием «устойчивость экологическая». Последняя подразумевает способность экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних факторов. Нередко «устойчивость экологическая» рассматривается как синоним экологической стабильности.

Ниже рассмотрены основные понятия и требования, относящиеся к категории экологической устойчивости. Их понимание необходимо для решения актуальных задач природопользования в сферах строительной и реставрационной деятельности, создания комфортной среды проживания и определения стратегии деятельности в сфере «устойчивого развития», «устойчивого строительства», «устойчивой реставрации».

* Пруцын О., Рымашевский Б., Борусевич В. Архитектурно-историческая среда. — М.: Стройиздат, 1990.

** Алферова Г.В. Кормчая книга как ценнейший источник древнерусского градостроительного искусства//Византийский временник, 1973. - Т. 35.

Образовательные задачи: ознакомить учащихся с понятием “биосфера” как гигантской экологической системы земного шара, рассмотреть структуру биосферы, выявить её функции, выделить границы биосферы, роль живого вещества в биосфере.

Развивающие задачи: продолжить формирование умений выявлять основные компоненты биосферы, умение устанавливать связи между компонентами биосферы, делать выводы.

Воспитательные задачи: продолжить патриотическое воспитание на примере жизни и деятельности В.И. Вернадского, прививать учащимся бережное отношение к природе, раскрывать мероприятия правительства нашей страны по защите природной среды.

Оборудование: портрет В.И. Вернадского, таблица “Строение биосферы”, карта “Животный мир Земли”.

Ход урока

1. Организационный момент.

Приветствие;

Подготовка к работе;

Наличие учащихся.

2. Мотивация учебной деятельности.

Сообщение темы, цели занятия.

Взаимоотношения организма и среды всегда представляли научный интерес, и актуальны и в наше время.

3. Изучение нового.

Тема: Структура биосферы.

1. Биосфера, её состав.

2. Структура биосферы.

3. Границы биосферы.

4. Роль живого вещества.

5. Сообщение домашнего задания.

6. Подведение итогов урока.

Оценить степень реализации поставленных целей.

Оценить работу учеников.

7. Закрепление изученного материала. Тестирование.

Ход урока

1. Каждый живущий организм связан с окружающей средой потоками вещества и энергии, проходящими через его тело. Потребляя и выделяя вещество и энергию, живые организмы влияют на среду своего обитания. Результаты жизнедеятельности каждого отдельного существа могут быть невелики и малозаметны. Но все вместе они сливаются в мощную силу, преобразующую земную поверхность. Представление о том, что живые существа нашей планеты взаимодействуют с внешней средой и изменяют её, возникло давно на основе наблюдений природных явлений.

Сам термин “биосфера” предложил в 1875 году австрийский геолог Эдвард Зюсс, изучавший геологические оболочки планеты Земля. Однако он не развил представлений о биосфере и не дал термину обоснование.

Создал учение о биосфере русский учёный геохимик, философ, минералог Владимир Иванович Вернадский (1863-1945 гг.).

Ссообщение учащегося “Биографические сведения о В.И. Вернадском”.

В.И.Вернадским было написано много книг. Первая книга вышла на французском языке “Геохимия” в 1927 году. В нашей стране в 1926 году в Ленинграде опубликована книга “Биосфера”. В 1927 году В.И.Вернадский открывает лабораторию по изучению биогеохимических процессов.

В 1949 году ему была присуждена Государственная премия 1-ой степени в области изучения биохимических процессов.

Вспомните, когда возникла жизнь на Земле? (3 – 5 млрд. лет назад).

Какие географические оболочки составляют биосферу?

Что является ограничивающим фактором для распространения жизни?

(Работа с рисунком учебника на стр. 217).

(Ограничивающим фактором является возможность существования условий для живых организмов).

Дайте определение понятию “биогеоценоз”. (Совокупность популяций разных видов, населяющих определённую территорию и неорганических компонентов, в которой может поддерживаться круговорот веществ).

Какие структурные компоненты составляют биогеоценоз? (Продуценты, консументы, редуценты).

Какими свойствами обладают биогеоценозы? (Целостность, устойчивость, саморегуляция).

Сравните два понятия “биогеоценоз” и “биосфера”. Какой вывод можно сделать?

Вывод: биосфера представляет собой гигантский биогеоценоз, который существует благодаря тесной взаимосвязи всех его структурных компонентов, представляет собой целостную и устойчивую систему, прошедшую длительный путь исторического развития.

Каковы же границы биосферы? Покажите на таблице. Она составляет 20–40 км. Сопоставьте толщину биосферы с диаметром Земли – 14 тысяч км, она представляет собой тонкую плёнку.

Определите ограничивающие факторы, обуславливающие границы жизни в биосфере: верхняя граница биосферы ограничена интенсивной концентрацией ультрафиолетовых лучей; нижняя – высокой температурой земных недр (свыше 100 градусов). На высоте 20 км можно обнаружить споры бактерий, а на глубине 3 км в водах – анаэробные бактерии.

В какой части атмосферы сосредоточена жизнь? - В тропосфере и нижних слоях стратосферы.

В какой части гидросферы сосредоточена жизнь? – Проникает на всю глубину Мирового океана до глубины 10-11 км.

В какой части литосферы сосредоточена жизнь? – Проникает до глубин 3 – иногда 7 км.

Живые организмы, преобразуя солнечную энергию, являются мощной силой, влияющей на геологические процессы. Специфическая черта биосферы как оболочки Земли – непрерывно происходящий в ней круговорот веществ, регулируемый деятельностью живых организмов. Так как биосфера получает энергию извне – от Солнца, её называют открытой системой.

Биосфера включает:

1) Живое вещество – “совокупность всех живых организмов планеты, в данный момент существующих, численно выраженная в элементарном химическом составе, весе, энергии” (по В.И.Вернадскому).

Это вещество геохимически чрезвычайно активно, т.к. связано с окружающей средой биогенным потоком атомов при осуществлении процессов дыхания, питания, размножения. Благодаря этому потоку почти все химические элементы проходят в общей цепи превращений через биогеохимическое звено. Таким образом, жизнедеятельность организмов – это глубокий и мощный геологический процесс планетарного характера. Миграция химических элементов из организма в среду и обратно не прекращается ни на секунду. Эта миграция была бы невозможной, если бы элементарный химический состав организмов не был близок химическому составу земной коры.

В.И.Вернадский писал: “Организм имеет дело со средой, к которой он не только приспособлен, но которая приспособлена к нему”.

Благодаря зелёным хлорофиллоносным растениям, осуществляется процесс фотосинтеза, в биосфере создаются сложные по строению молекулы с большими запасами заключённой в них энергии. Без живого вещества работа солнечного луча сводилась бы лишь к перемещению газообразных, жидких и твёрдых тел по поверхности планеты и к временному их нагреванию. Живое вещество выступает в качестве аккумулятора и уникального трансформатора связанной лучистой энергии Солнца. Улавливание солнечной энергии осуществляется преимущественно растительным миром. Но в удержании и преобразовании её по земной поверхности, а также перенос из внешнего в более глубокие слои планеты принимает участие всё живое вещество. Этот процесс осуществляется благодаря размножению и последующему росту организмов. Скорость размножения их (по В.И.Вернадскому) “это скорость передачи в биосфере геохимической энергии”. Элементарной и структурной единицей биосферы является биогеоценоз. Живое вещество выполняет в биосфере следующие биогеохимические функции:

Энергетическую;

Газовую;

Окислительно-восстановительную;

Концентрационную.

Растения концентраторы – осока и хвощ – накопление кремния в тканях, капуста и щавель – источники йода и кальция.

Животные концентраторы – в скелете и мышцах океанических рыб – кальций и фосфор; в раковинах моллюсков – кальций. Организмы накопители на длительное время приостанавливают миграцию ряда элементов, выводят их из цикла обращения, обедняют живое вещество.

Вывод: живые организмы, обитающие на Земле, представляют собой сложную систему преобразования энергии солнечных лучей в энергию геохимических процессов.

Живые организмы, регулируя круговорот веществ, служат мощным фактором, преобразующим поверхность нашей планеты.

2) Биогенное вещество – оно создаётся в процессе жизнедеятельности организмов (природный газ, нефть, сапропель, каменный и бурый уголь, торф, мел, известняк, горючие сланцы, руды железа и марганца).

3) Косное вещество – оно формируется без участия живых организмов (результаты движения земной коры, деятельность вулканов, метеориты).

4) Биокосное вещество – оно представляет собой совместный результат жизнедеятельности организмов и небиологических процессов (почва).

Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и в глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности земли, в почве и в приповерхностном слое океана.

Биомасса живых организмов суши представлена на 99,2% - зелёными растениями, и на 0,8 % животными и микроорганизмами. Биомасса океана такова: на долю растений приходится 6,3 %, на долю животных – 93,7 %. Величина биомассы для всей планеты составляет 3 – 1012 тонн, при этом на долю растений приходится 95 %, на долю животных - 5 %. В целом биомасса составляет лишь 0,01% массы всей биосферы.

По массе доля живого вещества составляет 0,01 – 0,02 % от массы косного вещества.

Работа с учебником: прочитайте текст на стр. 219. Ответьте на вопрос: Какой вклад в биомассу вносят растения, и какой – животные?

Перечислите уровни организации живой материи и дайте им краткую характеристику. Уровни организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеноценотический, биосферный.

5. Подведение итогов урока, оценивание ответов.

Учение о биосфере является важным достижением человечества. Впервые живая природа была взята в целом и рассмотрена со сторон суммарного значения и эффекта, производимого ею на окружающую среду. Биосфера – обще планетарная оболочка, состав, структура, энергетика которой обусловлена прошлой и современной деятельностью живого вещества. Живое вещество биосферы, выполняя геохимические функции (газовую, концентрационную, энергетическую, окислительно-восстановительную), создаёт и поддерживает компоненты биосферы.

6. Закрепление.

Выберите из предложенных суждений те, которые вы считаете правильными:

  1. Биосфера – это совокупность всех биогеоценозов.
  2. Биосфера – это открытая система.
  3. Живое вещество в биосфере выполняет биогеохимические и концентрационные функции.
  4. Высший уровень организации жизни на Земле – биогеоценотический.
  5. Нижняя граница обитания живых существ проходит в литосфере на глубине 2–3 км.
  6. Живые организмы, регулируя круговорот веществ, служат мощным геологическим фактором, преобразующим поверхность нашей планеты.
  7. Весь кислород атмосферы образован в результате жизнедеятельности автотрофных организмов.

Используемая литература

  1. С.Г.Мамонтов, В.Б.Захаров. Общая биология. Учебное пособие для средних специальных учебных заведений. – М., Высшая школа, 1986 г., стр. 224-227.
  2. С.Г.Мамонтов, В.Б.Захаров, Н.И.Сонин. Биология. Общие закономерности. 9 класс. Учеб. для общеобр. учреждений – М., Дрофа, 2003, стр. 216-221.
  3. Найджен Грин, Уилф Стаут, Денни с Тейлор. Биология в трёх томах, под редакцией Р. Сопера. Издательство “Мир”, 1993 г., том 2, стр. 79-81.
  4. В.Н.Гутина. Ещё раз об учении В.И.Вернадского. Биология в школе. 1997, №3, стр. 13-16.
  5. В.С.Чесноков. Владимир Иванович Вернадский. Биология в школе. 2004, №3, стр. 19-22.

2. Какова структура биосферы?
3. Каковы характеристики компонентов биосферы?
4. Перечислите свойства биосферы?
5. Почему В.И. Вернадский проводил нижнюю границу биосферы по толще осадочных и нефтеносных пластов?

Помогите пожалуйста)))

Какова функция ДНК в синтезе белка: а) самоудвоение; б) транскрипция; в) синтез
тРНК и рРНК.
Чему
соответствует информация одного гена молекулы ДНК: а) белку; б) аминокислоте;
в) гену.
Сколько
аминокислот участвует в биосинтезе белков: а)100; б) 30; в) 20.
Что
образуется на рибосоме в процессе биосинтеза белка: а) белок третичной
структуры; б) белок вторичной структуры; в) полипептидная цепь.
Роль
матрицы в биосинтезе белка выполняет: а) иРНК; б) тРНК; в) ДНК; г) белок.
Структурной
функциональной единицей генетической информации является: а) нить ДНК; б)
участок молекулы ДНК; в) молекула ДНК; г) ген.
иРНК в
процессе биосинтеза белка: а) ускоряет реакции биосинтеза; б) хранит
генетическую информацию; в) передает генетическую информацию; г) является
местом синтеза белка.
Генетический
код - это последовательность: а) нуклеотидов в рРНК; б) нуклеотидов в
иРНК; в) аминокислот в белке; г) нуклеотидов в ДНК.
Аминокислота
присоединяется к тРНК: а) к любому кодону; б) к антикодону; в) к кодону в
основании молекулы.
Синтез
белка происходит в: а) ядре; б) цитоплазме; в) на рибосомах; г)
митохондриях.
Трансляция
- это процесс: а) транспорта иРНК к рибосомам; б) транспорта АТФ к
рибосомам; в) транспорта аминокислот к рибосомам; г) соединение
аминокислот в цепь.
К
реакциям пластического обмена в клетке относятся: а) репликация ДНК и
биосинтез белка; б) фотосинтез, хемосинтез, гликолиз; в) фотосинтез и
биосинтез; г) биосинтез, репликация ДНК, гликолиз.
В
функциональный центр рибосомы при трансляции всегда находится число
нуклеотидов равное: а) 2; б) 3; в) 6; г) 9.
Транскрипция
и трансляция в эукариотической клетке происходит: а) только в ядре; б) в
ядре и цитоплазме; в) в цитоплазме.
В реакциях
биосинтеза белка в клетке энергия АТФ: а) выделяется; б) расходуется; в)
не расходуется и не выделяется; г) на одних этапах расходуется, на других
выделяется.
Количество
сочетаний триплетов генетического кода, не кодирующих ни одной
аминокислоты, составляет: а) 1; б) 3; в) 4.
Последовательность
нуклеотидов в молекуле иРНК строго комплементарна: а) последовательности
триплетов гена; б) триплету, кодирующему аминокислоту; в) кодонам,
содержащим информацию о структуре гена; г) кодонам, содержащим информацию
о структуре белка.
Где
формируются сложные структуры молекул белка: а) на рибосоме; б) в
цитоплазме; в) в эндоплазматической сети.
Какие компоненты составляют тело рибосомы: а) мембраны; б)
белки; в) углеводы; г) РНК.

Установите правильную последовательность основных этапов трансляции: а)синтез полипептидной цепи в функциональном центре рибосомы, б)активация

Биосфера включает в себя 3 основных компонента:

1) живое вещество ;

2) биогенное вещество – органо-минеральные и орга­нические продукты, созданные живым веществом (камен­ные угли, битум, горючие газы, нефть, торф, сапропель, лесная подстилка, гумус);

3) биокосное вещество – минеральные вещества, об­разующиеся в результате взаимодействия живых орга­низмов с неживой природой.

Главными компонентами биосферы как особой оболочки планеты являются также следующие составляющие.

1. Потоки космической энергии, электромагнитные и гравитационные поля, космическое вещество, поступаю­щее на Землю.

2. Биомасса живой растительности, способной путем фотосинтеза и роста фиксировать и преобразовывать космическую энергию в химическую потенциальную и хранить ее в виде органических соединений.

3. Почвенный покров, обеспечивающий существова­ние растений (механическая опора, корнеобитание, вод­ное, углекислотное, азотное, минеральное питание, тепло­вой режим, накопление запасов энергии в виде детрита и гумуса).

4. Биомасса живущих на почве и в почве консументов и редуцентов (животных, простейших микроорганиз­мов), потребляющих фитомассу и доводящих ее до пол­ной минерализации.

5. Гидросфера.

6. Атмосфера.

7. Литосфера (оболочка биогенных осадочных по­род).

1.9. Литосфера (земная кора)

Нижней границей земной коры принято считать гра­ницу Мохо – глубина, на которой происходит резкое увеличение скорости сейсмических волн (название по фамилии югославского ученого Мохоровичича, впервые установившего это явление в 1909 году). Граница эта расположена на разных глубинах – на материках от 30 до 70 км, на дне океанов – от 5 до 15 км. Таким образом, земная кора имеет под горными хребтами наибольшую мощность – до 75 км, наименьшую – на дне океанов – от 5 до 15 км. Химический состав земной коры впервые установил американский ученый Ф.У. Кларк. Признанием заслуг Кларка в этом вопросе стало название величины среднего содержания хими­ческого элемента в земной коре (либо ее части, напри­мер, в почве либо в составе коры других планет) кларком. Кларки самых распространенных изверженных кислых пород установлены достаточно точно, много данных и о кларках базальтов, осадочных пород. Слож­нее с кларками земной коры, т.к. неизвестно соотноше­ние в ней групп различных горных пород. Почти по­ловина земной коры состоит из кислорода, т.е. земная кора – это кислородное вещество. Кларк О – 47%. На втором месте Si – 29,5, на третьем – А1 – 8,05, Fе – 4,65, Са – 2,96, Na – 2,50, К – 2,50, Мg – 1,87, Тi – 0,45 %. В сум­ме это составляет 99,48 %. Суммарное количество ос­тальных 80 элементов не превышают 1 %. Кларки большинства химических элементов – 0,01–0,0001 %. Такие элементы называют редкими. Если они обладают и слабой способностью к концентрированию – редкими рассеянными. Например, U и Вr – их кларки почти равны (2,5·10 –4 и 2,1·10 –4 %), но U – редкий элемент, так как известны его месторождения, а Вr – редкий рас­сеянный, т.к. он не концентрируется в земной коре. В геохимии также употребляют термин «микроэлементы», под которым понимают элементы, кларки которых в данной системе менее 0,01%. А.Е. Ферсман построил график зависимости атомных кларков для четных и нечетных элементов периодической системы. Выяви­лось, что с усложнением строения атомного ядра кларки уменьшаются. Но линии, построенные Ферсманом, оказались не монотонными, а ломанными. Ферсман прочертил гипотетическую среднюю линию: элементы, расположенные выше этой линии, он назвал избыточными (О, Si, Са, Fе, Ва, Рb и т.д.), ниже – дефицитными (Аr, Не, Nе, Sс, Со, Rе и т.д.).

Распределение химических элементов в земной коре подчиняется следующим закономерностям.

1. Закону Кларка-Вернадского, который гласит, что все химические элементы есть везде (закон о всеобщем рассеянии).

2. С усложнением строения атомного ядра химических элементов, его утяжелением, кларки элементов уменьшаются (Ферсман).

3. В земной коре преобладают элементы с четными порядковыми номерами и атомными массами.

4. Среди соседних элементов у четных всегда кларки выше, чем у нечетных (установили итальянский ученый Оддо и американский Гаркис).

5. Особенно велики кларки элементов, атомная масса которых делится на 4 (О, Мg, Si, Са, …), а начиная с А1, наибольшими кларками обладает каждый шестой элемент (О, Si, Са, Fе).

Вообще химический состав минеральных объектов, как и живых организмов, удивительно разнообразен, но таким он является, если рассматривать их отдель­ных представителей, на видовом или родовом уровне. Если же брать в целом главные оболочки Земли – литосферу, почвы, растения, то выявляется удивительное сходство между этими, казалось бы, разными те­лами (табл. 1).

Таблица 1

Средний химический состав компонентов биосферы, %

(по Виноградову, Малюге)

Элемент Литосфера Почва Зола растений
Литий 10 –3 10 –3 10 –3
Бериллий 10 –4 10 –4 10 –4
Бор 10 –3 10 –3 10 –3
Фтор 10 –2 10 –2 10 –2
Натрий 2,50 0,63 2,0
Магний 1,87 0,63 7,0
Алюминий 8,05 7,13 1,40
Кремний 29,5 33,0 15,0
Фосфор 10 –1 10 –1 7,0
Сера 10 –2 10 –2 5,0
Хлор 10 –2 10 –2 10 –2
Калий 2,50 1,36 3,0
Кальций 2,96 1,37 3,0
Титан 0,45 0,46 0,1
Ванадий 10 –2 10 –2 6·10 –3
Хром 10 –2 10 –2 10 –2
Марганец 10 –1 10 –1 10 –1
Железо 4,65 3,8 1,0
Кобальт 10 –3 10 –3 10 –3
Никель 10 –3 10 –3 10 –3
Медь 10 –3 10 –3 10 –3

Конечно, по биогенным элементам раз­личия в составе золы растений, литосферы и почвы име­ются, но не столь значительные, как можно было бы ожидать. Это говорит о том, что в процессе эволюции отбирались некоторые механизмы и элементы, необходимые живым организмам. Таковы углерод, азот, фосфор, их доля в живом веществе резко повышена, но в среднем состав растительных организмов очень напоминает и средний состав пород, и средний состав почв. Исходя из этого факта, важнейшие структуры жизни формиро­вались в соответствии с составом литосферы. Живое ве­щество отбирало те элементы, которых много в природе, и на их основе строило организмы.

Разделение хими­ческих элементов по их содержанию в веществе на мак­ро-, микро-, ультра-микроэлементы отражает более важ­ную закономерность: в большинстве случаев элементы разных групп выполняют различные функции. Микроэлементы, как правило, служат катализаторами (входят состав ферментов). Макроэлементы, образно говоря, являются строительным материалом, «кирпичами» организмов. Конечно, есть химические элементы, осуществляющие смешанные функции. Например, железо в почвах и породах – макроэлемент (вещественная основа). В живых организмах железо является микроэлементов, входящим в состав ферментов, т.е. катализатор биохимических процессов.

Впервые понятие “биосфера ” (греч. bios – жизнь, spaira – шар) введено в биологию французским натуралистом Ж.-Б. Ламарком в нач. 19 века, а затем в геологию австрийским ученым Э. Зюсссом. Заслуга в разработке стройного целостного учения о биосфере принадлежит В.И. Вернадскому (1863-1945).

По В.И. Вернадскому, биосфера это целостная оболочка Земли, заселенная жизнью и качественно преобразованная ею .

Вернадский выделил в ней три главных компонента :

1 . живое вещество – совокупность всех живых организмов;

2 . биокосное вещество – минеральные вещества, включенные живым веществом в биогенный круговорот;

3. косное вещество – продукты жизнедеятельности живого вещества, не участвующие временно в биогеном круговороте;

4 . биогенное вещество .

Состав, структура и энергетика современной биосферы существенно обусловлены не только настоящей, но и прошлой деятельностью живых организмов. Биосфера – это своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

Неорганическая среда биосферы подразделяется на атмосферу, гидросферу и литосферу. В них выделяют пределы жизни, т.е. границы биосферы : нижняя часть атмосферы (тропосфера и нижние слои стратосферы до 25 км в высоту), верхняя часть литосферы или педосфера (до 15 км в глубину) и вся толща гидросферы (до 10 км в глубину). Жизнь в литосфере концентрируется только в поверхностном слое земной коры - в почве. Вернадский характеризовал почву как биокосное тело, состоящее одновременно из живых и косных тел .

Живое вещество, его функции.

В пределах биосферы выделяется “пленка жизни” особая оболочка Земли, где сконцентрировано живое вещество . Она располагается на границе поверхностного слоя земной коры (почвы) и атмосферы и в верхней части гидросферы.

Масса живого вещества невелика – около 0,01 % от массы всей биосферы, однако оно является ее основой и играет важнейшую геохимическую роль в планетарном масштабе.

Живое вещество (по Вернадскому) – это совокупность существующих или существовавших живых организмов, выраженная через массу, энергию и химический состав и являющаяся мощным геологическим фактором. Т.е. современная биосфера – это результат активной химической и геологической деятельности живого вещества.

Выделяют семь основных функций живого вещества:

1) энергетическая – связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием;

2) газовая – обусловливает миграцию газов, их превращение и обеспечение газового состава атмосферы (О 2 , СО 2 , N 2 , H 2 S, CH 4 - биогенного происхождения);

3) концентрационная – способность организмов к накоплению в своем теле химических элементов, как результат – залежи полезных ископаемых;

4) окислительно-восстановительная – заключается в химическом превращении веществ, интенсификации окислительно-восстановительных реакций под влиянием живого вещества;

5) деструкционная – процессы, связанные с разложением организмов после смерти, их минерализация, т.е. превращение живого вещества в косное;

6) рассеивающая – проявляется через трофическую и транспортную деятельность организмов (рассеивание энергии, вещества в пространстве);

7) информационная – заключается в накоплении информации живыми организмами и их сообществами, закрепление ее в наследственных структурах и передача новым поколениям.

Основные свойства биосферы как целостной системы:

1. Биосфера – централизованная система , т.е. центральным ее звеном выступает живое вещество.

2. Биосфера – открытая система. Существование ее немыслимо без поступления энергии извне, в основном, это энергия Солнца + энергия внутреннего тепла Земли.

3. Важное свойство биосферы и необходимое условие ее существования биогенный круговорот вещества и энергии. Именно за счет круговорота энергии и вещества обусловлено неограниченно длительное существование и постоянное развитие жизни на Земле.

4. Биосфера – система, характеризующаяся большим разнообразием . Это обуславливается за счет разных сред жизни, разнообразия природных зон, природных условий, видового многообразия. Т.е. разнообразие – основное условие устойчивости любой экосистемы и биосферы в целом (закон Эшби ).

5. Биосфера – саморегулирующаяся система, обладающая гомеостазом, т.е. способностью равновесие в системе, возвращаться в исходное состояние путем включения компенсаторных механизмов.

Вывод. Стабильноть и устойчивость биосферы и экосистем возможна при выполнении условий для сохранения видового разнообразия, многообразия трофических цепей, механизмов гомеостаза, которые решаются на самых различных уровнях - от глобального до локального.





Copyright © 2024 Развлечения. Стиль жизни. Светская хроника. Наука. Космос. Общие знания. Окружающий мир.